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1. Introduction

The production of epidemiological surveillance statistics relies, among other things, on coun-

tries testing capabilities and strategies. Testing, thus, works like a survey with many limitations in

its sample design. For example, while a survey can be designed using clustered random sampling

to be representative of the population and can have clear protocols in case of no responses, testing

has to focus primarily on serving as a diagnostic tool for people that present symptoms of being in-

fected with a given pathogen, and health workers that are in the front line. If resources are limited

(as it is the case in most countries around the world), most of the tests being performed during the

course of a pandemic would be used for diagnosis, causing severe biases in the different measures

that can be computed to monitor the status of the infection process. In light of these limitations,

what can we learn about the transmission process of SARS-CoV2 from daily counts of confirmed

cases and tests as the pandemic unfolds?

In this paper we concentrate on time-series issues that surveillance data exhibits. For this,

we design a method that yields a clearer assessment of the status of the transmission process of a

pathogen when the quality of data is poor. To do this we apply classic time-series treatments to

filter away seasonal and atypical components, two types of stochastic innovations that can produce

severe bias in any type of analysis. Then, we use the trend and cycle components of the resulting

time series to uncover the underlying infection process (the data-generating process) that gave rise

to the noisy signal we observe in the data.

During the seasonal adjustment stage, we apply the Hodrick-Prescott filter using a smoothing

parameter of 1600 to obtain the stationary error term in each series. We believe that this initial

calibration gives the filter enough flexibility to detect the seasonal and atypical components in the

series. We take advantage of this first stage to endogenize the value of the smoothing parameter as

a function of the variance of the seasonally adjusted error term. Specifically, we allow lower values

of the smoothing parameter for error terms that exhibit lower variances. We use these smoothing

parameters to estimate the trends of the test positivity rate and the daily count of tests.

Then, we combine the estimated trend of the test positivity rate with the trend of testing to

emulate the infection process, and build confidence intervals around this trend by block boot-

strapping. Using this result and external estimations of the generation time, we produce a sim-

ple estimate of the effective reproduction number Rt and compute its confidence interval using

the bootstrapped versions of the emulated infection process and log-normally distributed random

numbers calibrated to replicate the mean and standard deviation of the generation time.

Due to data limitations (we do everything only with daily counts of confirmed cases and tests),

the value that we find for Rt is downward biased when Rt ≥ 1 and upward biased when Rt < 1.

We are also worried about the possibility of having type II errors, that is, estimating Rt < 1 when

the real Rt ≥ 1. Because of this, we complement this estimation with a joint analysis of Rt and

the test positivity rate ρt. We divide (Rt, ρt) space into four quadrants that allow us to classify

trajectories in terms of adequacy of testing (threshold at ρt = 0.10) and dynamics of the infection

process (threshold at Rt = 1).
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To check the robustness of our estimation procedure and assess how well it is able to re-

produce the true dynamics of the infection, we apply our method to simulated data. For this we

build an Agent Based Model (ABM) that in addition to the infection process, explicitly models

data collection under different testing strategies. This way we can assess the performance of our

estimation strategy and investigate how the parameters that govern testing (scale, testing growth

rate, testing noise, and the probability of testing symptomatic patients) affect the quality of data

gathered from tests, and the results we obtain with our method.

Once we understand how our methodology performs in a controlled environment, we apply

it to Covid-19 data for 35 countries obtained from Our World in Data dataset (Max Roser and

Hasell, 2020) and official reports of Ecuador’s Ministry of Public Health. The result is a sample

that exhibits significant heterogeneity regarding data quality, something that is evident when we

study the dynamic consistency of our estimates. Although we apply the methodology to the entire

sample, we show intermediate results for a sub-sample of 15 countries. The last update for this

data occurred on August 13th.

In our simulated environments we find that, for a given growth rate in the number of daily

tests, the scale of testing and the strategy used to administer tests have a significant impact on

the information about the dynamics of infection that can be estimated using testing data. As

can be expected, we find that the effective reproductive number calculated using testing data is

systematically biased, with the bias falling when the real effective reproductive number is in the

vicinity of one. Increasing the scale of testing significantly reduces this bias as does random

testing. Classification of simulated trajectories in (Rt, ρt) space allows us to reduce classification

errors with respect to the true trajectory to 0.35%. This is orders of magnitude less than the

classification error of 6.1% and 23.6% we respectively obtain when looking at the reproduction

number or test positivity rate separately.

Our country analysis shows that Covid-19 surveillance data exhibit strong seasonal com-

ponents. Moreover, most countries atypical values are concentrated at the initial stages of the

transmission process. This is expected, since countries experience an adjustment period (import

more tests, adapt laboratories to process them, etc.). However, there are countries for which atyp-

ical values occur at more recent dates. If these sources of variation are not controlled for, then

daily count data might exhibit periodic or unexpected falls (or peaks), showing variations that are

completely orthogonal to the infection process.

We also find that the dynamic consistency of our estimation heavily relies on the quality of

data, something that is true even for more complicated Bayesian methods. The reason for this is

that our estimation might confuse new atypical innovations with changes in the trend, especially

if these atypical innovations do not meet the cut to be eliminated in the cleaning phase of our

method.

In our joint analysis of the effective reproduction number and the test positivity rate we find

that among our sample of observations, this quadrant is characterized by case fatality and mortality

rates that are at least 1.5 times the average that we find in other quadrants. What is interesting is

that in our simulations, which have an underlying transmission process without any intervention,

this quadrant is much more likely to occur. We also find that the odds of observing data in this
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quadrant fall as the testing scale increases, and increases as the probability of testing symptomatic

patients increase.

We organize this paper as follows. In the next section we look at the literature on the eco-

nomics of the pandemic and present our contribution. In section 3 we describe the econometric

procedure and the Agent-Based-Model that we use to assess the performance of our method. In

section 4 present our results. Section 5 concludes.

2. Economics and Epidemiology

The unfolding of the Covid-19 pandemic has awaken the interest of many economists in mod-

eling and understanding the details of disease transmission. Contributions in this line of research

can be classified in, at least, two different groups. First, there are papers that are worried about the

economic effects of the pandemic. The second group includes papers written by economists that

attempt to contribute directly to the epidemiology literature.

Within the first group, there are two different strategies. Early on the onset of the pandemic,

Correia et al. (2020) studied how public health interventions might affect the economy. Using data

from the 1918 Influenza Pandemic in the U.S., they show that areas that were more exposed to

the disease experienced sharper and more persistent declines in economic activity. These results

have been tested again by Lilley et al. (2020), who find that such effects are driven by population

growth and once differential trends are considered, positive effects of NPIs on economic activity

are non-significant. Moreover Barro (2020) shows that NPIs did not have significant effects on

curtailing mortality either, and explain that the most likely reason is that NPIs were not in place

long enough.

The second strategy consists on using standard macroeconomic models augmented with SIR

frameworks to analyze optimal policy responses to the pandemic. In this regard, one of the first

papers to appear was Eichenbaum et al. (2020a), where the authors find that the endogenous house-

holds’ response to cut back on consumption and work reduces the impact of the epidemic in terms

of its death toll. They also find that although containment policy increases the severity of the re-

cession, it saves about half a million lives in the U.S. In another effort, Eichenbaum et al. (2020b)

show that testing without quarantining might have negative effects, both economic and related

to public health. Moreover, a policy that optimally combines testing with quarantining infected

individuals reduces significantly the trade-off between declines in economic activity and health

outcomes that is triggered by general lockdowns. In the same line, Arellano et al. (2020) study

how the pandemic might affect emerging markets, in particular, how lockdown policies might

trigger prolonged debt crises.

Other papers look at endogenous reallocation of economic activity and the distributional ef-

fects triggered by the containment policy applied to control the pandemic. Again, incorporating

SIR frameworks within macroeconomic models, Krueger et al. (2020) show that rational decisions

to cut back on consumption and implement additional hygiene measures might allow infections

to decline entirely on their own. More on the redistributive part of the story, Glover et al. (2020)
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study optimal lockdown policies in an environment where the redistributive effects triggered by

the intervention between young and old cohorts is explicitly modeled.

The most salient example for papers in the second group is Manski and Molinari (2020),

where the authors study the measurement errors involved in estimating the Covid-19 infection rate,

and propose a methodology to reduce this bias. Another attempt is made by Fernández-Villaverde

and Jones (2020) that put forward economists’ worry regarding the way the transmission process is

modeled under the SIR framework. In particular, the assumption that the rate of transmission is an

structural parameter. In this line, the authors start from the observation that the rate of transmission

is actually endogenous, since it depends on consumption and work decisions made by households.

They use information on death counts to recover the rate of transmission and, from here, estimate

the effective reproduction number. In line with this contribution, to the best of our knowledge (and

to our surprise), there is only one paper in the epidemiology literature that considers how agent’s

behavior might affect the transmission of disease (Eksin et al., 2019).

We contribute to this branch of the literature, by proposing an estimation framework that

relies on daily counts of confirmed cases and tests (widely available) to monitor public policy in

environments where access to more complete and perfect information is lacking. We also propose

a variation to the SIERD model in which we add a layer with explicit modeling of the data-

gathering process, that allows us to have a clearer view on how different testing strategies might

trigger bias in the analysis of the transmission process when such analysis is based on surveillance

data.

We also contribute to the epidemiology literature that deals with the measurement of the ef-

fective reproduction number. In this regard, our methodology relies on simple time-series analysis,

contrary to most recent epidemiological papers that rely on more complex Bayesian methods to

estimate the real-time dynamics of the effective reproduction number (Wallinga and Teunis, 2004;

Bettencourt and Ribeiro, 2008; Obadia et al., 2012; Thompson et al., 2019; Abbott et al., 2020;

Kubinec, 2020). These efforts make important contributions in terms of the epidemiological man-

agement of the data and real-time estimation of the generation time, which is fundamental for

estimating Rt. However, to the best of our knowledge, no effort has been made in the direction of

taking into consideration the data-gathering process that is involved in producing incidence data.1

3. Methods

We propose a method that, besides estimating the effective reproduction number and the test

positivity rate, proposes a classification mechanism based on exogenous thresholds. The method

can be thought of as a two-steps procedure. The first step consists on applying typical time series

analysis to extract the underlying trend of confirmed positives and the positivity rate. The purpose
1Other approaches heavily rely on the SIR framework to produce estimates for Rt. Shim et al. (2020) compute

a generalized growth model based on the equations of the SIR model and estimate the effective reproduction rate for
South Korea. In a similar vein, Kucharski et al. (2020) use a stochastic transmission dynamic model to estimate early
dynamics of the transmission process in Wuhan. They find an effective reproduction number that moves between 2.35
and 1.05.
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of this step is to produce smooth infection and positivity rate curves across time to minimize the

variation in the data that is orthogonal to the infection process.

In the second step, we use the estimated trends for the reproduction number and the test

positivity rate to classify the trajectory followed by a population on the joint space defined by

these two indicators. The goal is to use exogenous thresholds defined over the two indicators and

use the joint analysis to minimize type I and II errors in assessing the current situation of the

transmission process.

Once our method is in place, we apply it to a controlled environment. This setting consists

on an agent-based-model with an embedded SIERD infection framework and an exogenously-

determined testing layer (the data-gathering process). We use this controlled environment to study

the limitations of the econometric analysis and our classification mechanism.

In this section we first describe in detail the econometric procedure to compute the effec-

tive reproduction number and the test positivity rate, and show how the joint trajectory can be

used as a classification mechanism. Then we describe the agent-based environment and the main

characteristics of the simulation.

3.1. Estimating Trends

The idea is simple: We are dealing with a dynamic process that, due to data gathering and the

data generating process itself, is subject to several sources of noise. Before going into the specifics

of the problem, consider any finite time series yt. In economics usually yt has three components: A

trend τt, a cycle εt (or stochastic deviations from the trend), and a seasonal component ηt (which

is stochastic and periodic). However, since typical Covid-19 data is reported daily, we need to

account for two additional problems: There might be large atypical values νt, and there might be

days when there are no official reports, so the series have missing values. Thus, yt can be written

as

yt = Nt(τt + εt + ηt + νt), (1)

where Nt is a missing value operator that takes a value of 1 if the data point exists, and it is

the empty set ∅ if data is not available. Notice that we have assumed that the components are

additive (this can be achieved by working with logarithms). The purpose of the method is to filter

away the atypical and seasonal components, clear all missing values, estimate trends to extract the

underlying dynamic process and use bootstrapping on these trends to build confidence intervals.

To accomplish this, the first step is to eliminate missing values, and we do so by linear

interpolation. This process can be applied as long as there are no long black-outs because, if

this is the case, linear interpolation might cause severe bias in the behavior of the underlying

dynamics of yt. Thus, suppose there is a small, finite time period n ∈ Nt in an otherwise long

time series. Also, let L(·) be a linear function that takes as input two consecutive data points to

build a linear function. Then, we can write

ỹn = L(yn|n ∈ Nt, yn−1, yn+1), (2)
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where yn−1 and yn+1 are two consecutive non-missing data points in yt. If yn occurs at any of the

extremes of yt (that is at y0 or at yT ), then we use linear extrapolation based on the linear function

defined by y1 and y2 or yT−2 and yT−1 respectively. For the sake of precision, we only extrapolate

one period, if necessary. With this operation we can define

ŷt = N0
t yt + (1−N0

t )ỹn = τ̂t + ε̂t + η̂t + ν̂t, (3)

where N0
t is the same missing operator with zeroes instead of the empty set and x̂t is xt after linear

interpolation.

The next item we tackle is the seasonal component. For this, we apply an S(m,n) seasonal

filter. Then, we sort the cycle and the atypical values and eliminate the top and bottom quintiles.

This step allows us to obtain ε∗t , which corresponds to a seasonally adjusted-atypical free error

term.

Even though we already have the adjusted cycle component, we still need to compute the

trend, which is the hart of our procedure. To do this, we compute the seasonally adjusted-atypical

corrected series as

y∗t = τ̂t + ε∗t , (4)

where τ̂t is still the trend component that was calculated when the time series was not adjusted nor

corrected. To solve this issue, we filter y∗t again. We use ε∗t to compute endogenous smoothing

parameters. In particular, we set λ∗ = ζσ2ε , where σ2ε is the variance of the adjusted and corrected

error term, and ζ ≥ 1 is a scaling parameter. Notice that the smoothing parameter implies a more

rigid filter as σ2ε increases.2 In this case, by applying the HP Filter with smoothing parameter λ∗

we obtain τ∗t . Since both τ∗t and ε∗t are random variables, we follow Gallego and Johnson (2005)

to build confidence intervals around both components using block bootstrapping.

The use of the HP-filter deserve a few words. By design, the filter is built having in mind

business cycles and macroeconomic time series (Hodrick and Prescott, 1997). One particular

process that the authors have in mind is GDP deviations from long-term growth, so they interpret

the trend as the long term component, and the deviations from trend as short-term business cycles.

Thus, the authors recommend different values for λ depending on the periodicity of the data (100

for yearly data, 1600 for quarterly data and 14400 for monthly data). That is, lambda should

increase substantially with the periodicity of data, so for high frequency data (as the one for Covid),

λ should approach infinity.

However, the problem with this approach is that as λ→∞, the HP filter converges to a linear

trend, and this is something that we want to avoid at all costs, specially for countries with stable

data. The reason for this is that, despite its high frequency, the series of daily positives and test pos-

itivity rate are significantly non-linear processes (it follows the infection process, which exhibits

Gaussian-like behavior). Another alternative would be to use ad-hoc values for the smoothing
2This approach clearly differs from the original definition for the smoothing parameter, where λ = σ2

τ/σ
2
ε .
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parameter, as is done by Fernández-Villaverde and Jones (2020). However, this might be prob-

lematic, since the quality of surveillance data is very heterogeneous.

Now we apply this procedure to Covid-19 data. Let pt and st denote the series of daily

reported positives and tests performed, both measured in logarithms. We apply linear interpolation,

seasonally adjustment and atypical correction to both series. Thus, after this step we obtain

p∗t = τ̂pt + ε∗pt,

s∗t = τ̂st + ε∗st.

With Covid-19 data, p∗t and s∗t are highly correlated, and p∗t is downward biased because it is

unfeasible to test the entire population. Moreover, τ̂pt is not a good estimate of the dynamics of the

infection process, since it was computed with the data before any correction was made; something

similar happens with τ̂st. To tackle the first issue, we compute the test positivity rate. We do this

because this indicator is more stable than p∗t or s∗t on their own. Remembering that both series are

in logs, we can write the test positivity rate ρt, as

ρ∗t = p∗t − s∗t ,

= τ̂pt − τ̂st + ε∗pt − ε∗st,

= τ̂ρt + ε∗ρt,

where τ̂ρt is the trend of the test positivity rate, and ε∗ρt is the error term. We use the latter to

compute the endogenous smoothing parameter to estimate τ∗ρt. In the same way, and to tackle the

second issue regarding the slope of the testing procedure, we use ε∗st to compute the endogenous

smoothing parameter to estimate τ∗st.

However, we are not done yet. Given that ρ∗t is computed with data based on testing, we need

to be aware that testing cannot be performed over the entire population and that some countries

experience severe delays in processing samples, so ρ∗t is a biased estimator of the true infection

probability. Following Manski and Molinari (2020), we can reduce this bias by computing the

appropriate adjustment for each period. In particular, we could obtain

ρ∗at = ωtρ
∗
t = ωtτ

∗
ρt + ωtε

∗
ρt. (5)

Then, we use ρa∗t to compute bias-corrected daily positives as

p∗at = ρa∗t + s∗t ,

= ωt(τ
∗
ρt + ε∗ρt) + s∗t ,

= ωtτ
∗
ρt + τ∗st + ωtε

∗
pt + (1− ωt)ε∗st, (6)

In a first approach, we set ωt = 1 for all t, so no adjustment is made. Of course, all our

results are still biased, but at least we can use the limited data that we have at hand to present

the method. Moreover, in spite of the limitations, we believe that this exercise provides valuable
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lessons regarding the limitations that many countries have in terms of data management. With

richer data, we could make further adjustments to correct these biases, similar to what is done by

Abbott et al. (2020).

We use p∗at to compute the effective reproduction number Rt applying the Lotka-Euler equa-

tion (Dublin and Lotka, 1925; Feller, 2015; Metz and Diekmann, 2014; Keyfitz and Caswell,

2005)3. For this, we consider only the trend component of pa∗t which is given by

τ∗pat = ωtτ
∗
ρt + τ∗st,

and compute the exponential growth rate of positive cases γt by means of a linear regression which

can be written as

τ∗pat = β0 + γtt+ εt,

for all t ∈ Tw = [t, t], where Tw is a sliding time window of nw periods. Form here, we compute

Rt as

Rt = exp{θγt}, (7)

where θ denote the time between successive cases of infection (generation time) estimated by

(Abbott et al., 2020). Again, we apply block bootstrapping and assume that θ is log-normally

distributed to estimate confidence intervals for Rt. As before, if ωt = 1 then the level of Rt is

downward biased when Rt ≥ 1 and upward biased when Rt < 1. However, what is important to

check is how likely it is for Rt to be below 1.

3.2. Trajectories Over the (Rt, ρt) Space

As the pandemic unfolds, the data-gathering process produces volatile information that is

subject to selection bias (testing patients with symptoms with higher probability) and measure-

ment error (systematic bias in the measure of Rt). Because of this, it is important to look at a

combination of indicators to assess the current situation in specific territories. In this section we

argue that looking at the effective reproduction number is not enough to assess whether or not the

infection process is contained.

The reason for this is simple. In spite of all data corrections that can potentially be made

(ours and delay corrections such as in Abbott et al., 2020), the value and dynamics of the effective

reproduction number depend on testing and the test positivity rate. Thus, there could be cases

in which Rt < 1 because there is an premature reduction in the testing scale (daily tests fall on

average) combined with constant (or just marginal reductions) in the test positivity rate. If this
3We opt for using this equation. However, since the time period that we are considering involves days, weeks

and months, we assume total population remains constant, so the results are approximately equal to what would be
obtained using the equation proposed by Anderson et al. (1992); Pybus et al. (2001); Ferguson et al. (2005); Wallinga
and Lipsitch (2007) where Rt = 1 + γtτ .
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occurs, then Rt < 1 does not imply that transmission is under control, but that the testing scale is

not appropriate given the size of the outbreak.

To rule out this wrong assessment, we propose to look at the joint trajectory of the effective

reproduction number and the test positivity rate, and argue that there is evidence of a contained

infection process only when both indicators are sufficiently low. In fact, while Rt measures how

fast the pathogen is spreading, the test positivity rate provides a measure of the level of infection

at a given point in time.

[Figure 1 about here.]

For the design of this assessment scheme we consider two thresholds. For the effective re-

production number we take Rt = 1. The reason is simple: When Rt < 1 the exponential growth

rate of daily new infections is negative, so daily counts of new cases are falling over time. For

the test positivity rate, we set the threshold to ρt = 0.10, or a test positivity rate of 10%, which

is a goal set by the World Health Organization (public statement by Dr. Michael Ryan, Executive

Director of the WHO, cited by Bult, 2020). The reason for this is that, as we mentioned before,

the test positivity rate is highly correlated to the true infection process, so as the disease spreads

over susceptible population at positive exponential growth rates, test positivity rates are expected

to be high. As the infection process is contained with effective interventions, and if testing is done

correctly (i.e. the scale of the testing scheme is enough to cover the size of the outbreak), the test

positivity rate should be low.4

As shown in Figure 1, the classification scheme defines four quadrants. Quandrant I corre-

sponds to a process that is active with a testing scale that is not enough for the scale of the infection

process. Quadrant II corresponds to process that might seem to be under control (Rt is lower than

one), but the testing scale is insufficient. This implies that what we observe in the dynamics of the

effective reproduction number might be just the consequence of a poorly designed testing strategy.

Quadrant II is the only section of this space where we can be sure that, at least temporarily, the

infection process is under control. In this case one have to be cautious with respect to trajectories

that move towards quadrant IV. There might be two reasons for this type of displacement. The first

reason is that, by construction, Rt tends to 1 as the exponential growth rate of confirmed cases

converges to zero. Thus, if Rt is converging to 1 from below but the test positivity rate is close to

zero, then the situation is under control and there is nothing to worry about. The second reason

would take the form of a trajectory that moves to the north-east; that is, we have a simultaneous

increase in the effective reproduction number and the test positivity rate. In this case there are

reasons to believe that the population is facing a new wave of infections.

Finally, in quadrant III we have two types of populations. There are those that are at the be-

ginning of the infection process, where positivity rates are low and infection reproductive numbers

are high; and those that are facing new waves of infection as explained in the previous paragraph.
4In fact, according to the Johns Hopkins University Coronavirus Resource Center, the WHO advice for governments

is to make sure that testing positivity remains below 5% during, at least, 14 weeks before ending confinement measures
(https://coronavirus.jhu.edu/testing/testing-positivity).
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3.3. A Controlled Environment

To assess the dynamics of an unfolding epidemic we need to understand how the noisy data

collected from testing relates to the true infection curve under different testing strategies. To do

this we construct an Agent Based Model (ABM) that explicitly simulates both the infection process

and noisy data collected under different testing schemes applied to our simulated population. Daily

testing data and the true epidemiological curves from our ABM allows us to assess the performance

of our model for estimating the dynamics of an unfolding epidemic. In addition, it allows us to

imf investigate how the parameters that govern testing affect the quality of data gathered from

tests, and the limitations this data may have in providing information about the true dynamics of

an unfolding epidemic for any model that attempts to estimate its dynamics.

While we use a SEIRD setup for our simulation, we are agnostic as to whether compartmen-

tal differential equation models give an accurate representation of the spread of an epidemic when

compared to models that incorporate behavioral responses (see Eksin et al., 2019; Fernández-

Villaverde and Jones, 2020, for example). Unlike other equation and agent based models of conta-

gion, the purpose of our model is not to represent contagion in a real population in order to predict

the true trajectory of an epidemic. The purpose of our model is to generate noisy data that plausi-

bly arise from real testing strategies in order to compare the data generated by those tests with the

true infection curve given an underlying epidemiological process.

3.3.1. Simulation Setup

Our simulation is implemented in the NetLogo platform (Wilensky, 1999), and can be di-

vided into two layers. The first layer simulates the epidemiological process, and the second layer

simulates testing. The epidemiological layer is a straightforward agent-based implementation of

the equation based SEIRD model in Meidan et al. (2020) and uses similar parameters values. In

our simulation, an initial population of exposed individuals moves about randomly among a pop-

ulation of susceptible individuals. The epidemic spreads through a population of N agents as E0

exposed individuals make contact with those who are susceptible S0 = N − E0. Once agents

become exposed they undergo a progression of disease that evolves stochastically. We simulate

the progression of disease for symptomatic as well as asymptomatic individuals as this will be

necessary when we apply testing strategies to a sample of the population. Figure 2 presents all

the compartments used in the simulation and the progression of the disease as it unfolds for each

individual.

In the epidemiological layer agents walk randomly on the surface of a toriod with 10,000

patches. Agents become exposed with probability, Pexposed, when a susceptible and an infectious

agent share the same patch. The probability of contagion Pexposed is calibrated to match the β

parameter of the SEIRD model of Meidan et al. (2020). Recall that in a standard SIR model

β = ρ̄ ∗ Pexposed, where ρ̄ is the average population density. Once an agent becomes exposed the

agent transitions between stages of disease following the probabilities in figure 2 and in table 1.

We model the onset of symptoms and the onset of infectiousness separately with their respective

incubation and latency periods. In order to focus our attention on the effect of testing strategies on
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the quality of data, we run the epidemiological layer with the same parameters and same random

number generator seed to keep the true underlying epidemiological process identical between runs.

[Table 1 about here.]

[Figure 2 about here.]

The focus of our simulation is not the epidemiological layer but testing. Each time period a

number of tests are performed on a sample of the population. Three parameters, the scale of testing

scale, the growth rate of testing gtests, and a shock to the growth rate σu determine the number of

tests. One parameter, Ptests, determines how the sample that undergoes testing is selected. These

four parameters define the space that we explore to see the effect of different testing strategies

in the simulation and how this relates to the performance of our model. The number of tests in

each period of the simulation follows a function with exponential growth trend with a normal i.i.d.

stochastic shock with mean µu = 0, and standard deviation = σu. Formally,

testst = scale ∗N exp{gtestst+ ut}. (8)

The way the sample of the population that is tested is selected is very important because

testing strategies can bias what we can learn about the true epidemiological curves from testing

data. While others have looked at the important social benefits of testing as an integral part of

mitigation strategies (Eichenbaum et al., 2020b, for example), there is relatively little work on

the differences between testing strategies when there are binding constraints on the number of

tests that can be deployed each day. Testing of symptomatic infections for diagnostic purposes is

very important, but the data gathered from diagnostic tests is probably biased due to the higher

probability of a positive result if one presents symptoms. Many countries, especially those with

limited testing capacity, have prioritized testing of symptomatic individuals. On the other hand,

random samples of the population may give unbiased data, but certainly sacrifice resources that

could be used for diagnostic purposes. Thus countries with limited testing scale and constrained

growth rate at which this scale can be expanded face this trade-off when it comes to selecting a

testing strategy.

In our simulation the sample of the population that is selected for testing is as follows. Each

period the pool of individuals that can be tested is composed of those individuals that have not been

previously tested or, if they had, the have not had a positive result. The parameter Ptests determines

the proportion of tests that are performed on individuals that are infected and show symptoms.

We explore two testing strategies, random testing (Ptests = 0) and testing where symptomatic

individuals have higher priority to be tested. Thus for Ptests > 0, at each time period t we test

testssymptomst = min{Ptests ∗ testst, Isymptomsct } symptomatic individuals, where Isymptomsct is

the total number of symptomatic individuals in the population. The remainder of tests given by

testst − testssymptomst , corresponds to a random sample from the pool of individuals that can be

tested.

We do not account for background rates of symptoms that are present in SARS-CoV 2 and

other diseases. A more realistic model should include this aspect. Furthermore we assume testing
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is perfect such that there are zero false positives and false negatives. We take this approach to focus

on the effect of testing strategies and not on the accuracy of the tests being used. We also assume

sampling and testing is carried out and processed instantaneously to focus on the effects of testing

strategy and abstract away from processing capacity, although the testing and test processing delay

distribution probably varies widely by country.

To assess the performance of our model we construct measures of its performance for our

simulated data. First we find the true effective reproduction number for our simulation,

Rsimt = Rsim0

St
S0

= βsimθsim
St
S0

(9)

to use as our benchmark (Nishiura and Chowell, 2009)5.

The parameter βsim = 1.25 is the simulation parameter that controls how fast the infection

spreads in its initial phase, and θsim = 5.05 is the serial interval for the epidemiological param-

eters of the model. Then we calculate a naive effective reproduction number that is based solely

on observed daily positive tests Rnaivet , and the effective reproduction number, Rmodelt obtained

applying the estimation model from section 3. Both Rnaivet and Rmodelt are found using equation

(7).

We first define two performance measures that compare Rnaivet and Rmodelt to the true effec-

tive reproduction number from our simulation, Rsimt . Our first measure ηj captures the probability

of type II error when using Rjt to asses when the true reproductive number is smaller than one.

In the language of hypothesis tests let H0 : Rsimt ≥ 1. Then we compute the percentage of time

periods in the simulation when Rjt < 1 and Rsimt ≥ 1. Formally,

ηj = P[Rjt < 1 ∧Rsimt ≥ 1], (10)

for j = {naive,model}, where the probability is found from the observed values for each sim-

ulation run. This is our most important performance measure because in dealing with noisy data,

we would like our model to do as little harm as possible and thus we seek to have η2 be as close

to 0 as possible. This performance measure allows us to assess how well alternative estimations

of Rjt capture the dynamic behavior of the infection process.

Our second performance measure is the root mean squared error between Rjt and Rsimt for

each model run, which can be written as

RMSEj =

√√√√ 1

T

T∑
t=0

(Rjt −Rsimt )2. (11)

As noted before we don’t expect either the naive or the model reproductive numbers to equal

the true value due to testing bias. However the RMSEj allows us to see how the naive and model

5We find the true effective reproduction number for the simulation using its definition given in Nishiura and Chowell
(2009) because have time invariant epidemiological parameters in our simulation. We could also estimate the true
effective reproduction number using the infection curve and the Euler-Lotcka equation as in (7), but this change plays
in our favor
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reproductive values deviate from the true reproductive number in the simulation as a function of

the testing parameters. With this measure we assess both the dynamic behavior and how well the

estimation alternatives fit the true value. Thus RMSEj is the average measurement error of the

estimation of Rjt based on testing data.

4. Results and Discussion

We begin this section by applying our econometric procedure to the controlled environment

developed in the previous section. The goal is to understand how the testing process affects the

signal of the true infection curve that we observe, and how our methodology allows us to improve

such observation. Once this is well understood, we apply the method to country data and evaluate

these results through the lens of the theoretical assessment obtained in the agent-based framework.

4.1. Simulation Results

We run the agent-based environment for T = 60 days, N = 100, 000 agents, and an initial

exposed population of E0 = 50 agents. We run each of the 40 parameter combinations 100 times

giving us a total of 4,000 observations. The parameter space is given by all the combinations

of parameters in table 2. We do not vary the growth rate in testing to focus on situations where

the testing rate cannot be increased by a large amount due to binding capacity constraints. As

a benchmark, we compare our estimation of the effective reproduction number with an naive

estimation where no time-series corrections are performed (i.e. we take the testing data as it is).

[Table 2 about here.]

To obtain an overall picture of our simulations we first graph the evolution of Rjt and Rsimt
over the course of the simulation. Figures 3a and 3b show the evolution of the effective repro-

duction number with respect to time and with respect to the true reproduction number. As is

immediately apparent, both model and naive reproductive numbers are systematically biased, un-

derestimating the true reproductive number before Rsimt = 1, and overestimating after this point.

The bias can be seen to be larger for smaller testing scales (scale) and for testing strategies that

prioritize testing symptomatic individuals (i.e. larger values of Ptests), while the size of the dis-

turbance to the testing error trend (σu) seems to play a very small, if any role.

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

To quantify the effects of testing scale and testing strategy on the systematic bias in the

effective reproduction number we find the conditional mean and standard error of RMSEj and

ηj
6. The conditional probability distribution for RMSEj and ηj can be respectively seen in
6This is equivalent to regressing RMSEj and βj with respect to all the the parameters and their interactions.
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figure 4 and figure 6. The conditional means for each parameter combination can be seen in

figure 5 and figure 7.

Both performance measures exhibit very similar behavior with respect to the testing param-

eters. As can be seen in figure 5 for the lowest testing scale, the naive model outperforms our

model, but this gap falls sharply as the testing strategy switches from random testing to prioritize

symptomatic patients. As expected, increasing testing scale reduces theRMSE for both the naive

and the model. Under random testing the fall in RMSEj due to increasing testing scale is greater

for the naive calculation ofRj(t) than for the model. However as soon as testing strategies become

non-random (Ptests > 0) the fall in RMSEj from increased testing scale is much greater for the

model than for the naive effective reproduction number. This is significant because most countries

with binding testing constraints probably prioritize symptomatic patients. While this is good in

terms of diagnostics, there is a trade-off involved in the precision of the effective reproductive

number.

[Figure 6 about here.]

[Figure 7 about here.]

Our analysis of the effect of testing parameters on the probability of type II error follows a

similar pattern to the RMSE. Figure 7 shows the conditional mean of the probability of type II

error. As can be seen under random testing (Ptests = 0) we have the lowest rate of type II error.

Under non-random testing, increasing the testing scale reduces the probability of type II error

more for the model than for the naive estimation of Rj(t). For example the average rate of type

II error at the largest testing scale (scale = 0.01, one percent of the testable population is tested

each day) is 3% for the model while it is more than 6 times larger, 18.9%, for the naive calculation

of Rj(t). This is significant if the effective reproduction number is to be used as an indication that

the epidemiological process is entering its waning phase.

While these results show that both the naive, and model estimations of the effective reproduc-

tion number are biased, the size and direction of this bias is sensible to the parameters that govern

the data gathering process. As we have taken the epidemiological process as given, this bias is

independent of the data generating process (i.e. the epidemiological process) and due solely to the

data gathering process (i.e. testing).

Next we apply the trajectory classification scheme to our simulated data to study how this

methodology allows us to reduce the probability of type I and type II errors that can be triggered

by the data gathering process. We present the density plot of trajectories in Figure 8. Lighter

colors represent a higher concentration of points in a given area. For reference, we also present

the true trajectory followed by the simulated infection process. For this, we use the Rt derived

directly from the simulated process, and we compute the true positivity rate as the ratio of infected

individuals with respect to total population at a given point in time. Moreover, black dotted lines

delimit the four quadrants that are defined by the combination of thresholds.

[Figure 8 about here.]
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This plot shows that, even in the presence of significant variation, it seems like trajectories

based on testing data follow the true trajectory and coincide when they pass through the four possi-

ble quadrants. This result is encouraging because it implies that, even in the presence measurement

error and selection bias in the estimates ofRt and ρt, looking a its joint distribution could be a rea-

sonable approach to minimize the probability of wrongly confirming that the transmission process

is under control.

To formalize this evidence, we define three errors that occur due to measurement error and

selection bias. The first error term aims to analyzing deviations in Rt. Differently to the previous

section were we only considered type II errors, in this section we count situations wereRt is below

(above) 1 while Rsimt is above (below) 1. Formally, we have

δR = 1[(Rt < 1 ∧Rsimt ≥ 1) ∨ (Rt ≥ 1 ∧Rsimt < 1)],

where 1 is an indicator function that takes the value of 1 if the condition in square brackets holds

and 0 otherwise, so δR is a dummy variable. Following the same idea, we count deviations from

the true positivity rate considering the 10% threshold, so we can write

δρ = 1[(ρt < 1 ∧ ρsimt ≥ 1) ∨ (ρt ≥ 1 ∧ ρsimt < 1)].

Finally, we define a fail when δR = δρ = 1 which corresponds to situations in which both

estimates (Rt and ρt) are deviating from their true values at the same time. Formally, we have

δ(R,ρ) = 1[δR = 1 ∧ δρ = 1].

We compute these three dummy variables for t ∈ (5, 60) for the 4,000 runs that we simulated

using our ABM, giving us a total of 215,933 observations. To see how the joint analysis of Rt and

ρt reduces the probability of type I and type II errors, we compute the probability of error inRt, ρt
and (Rt, ρt). We show the results of these calculations in Table 3 and present standard deviations

in parenthesis.

[Table 3 about here.]

In all three cases, the percentage of classification errors is statistically different from zero,

and much higher for the test positivity rate (23.6%) than for the effective reproduction number

(6.06%). However, when we look at the joint analysis, classification errors fall drastically to

0.34%.

How do testing affect these errors? To answer this question we take advantage of the exo-

geneity provided by our simulations, and estimate the following regression,

δitj = βj + γγγjD
sc
i +αααjD

symp
i + λλλj(D

sc
i )′Dsymp

i + κjD
ε
i + µitj , (12)

where i corresponds to each simulation, t denotes the time period, j = {R, ρ, (R, ρ)}, βj is the

constant term, Dsc
i are dummy variables for the four possible values that testing scale can take
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in the simulations, Dsymp
i are dummies for the probability testing symptomatic, Dε

i is a dummy

variable that takes the value of one when the scale of the innovation in the testing process is high

and (Dsc
i )′Dsymp

i is a set of interactions which is included as long as the model can be estimated.

In principle, we estimate equation (12) by OLS with standard errors clustered at the simu-

lation level. Notice that, since parameters do not vary within simulations, we are automatically

accounting for fixed effects in our regression. Moreover, since we have complete control over the

parameters in each simulation, the correlation between the error term and the regressors is zero,

so we are in fact estimating causal effects. The only limitation with our strategy is that we are

assuming linearity. To see how this assumption might affect our results, we estimate (12) assum-

ing cumulative logistic (logit) and normal (probit) distributions, and estimate the parameters by

maximum likelihood. We present the marginal effects of these estimations in Table 4.

[Table 4 about here.]

Our results are sensible to the linearity assumption, particularly for classification errors in Rt
and ρt although we do not find significant difference when we look at the joint analysis. Nonethe-

less, we choose non-linear estimations over the linear model and report the results of all the esti-

mations. Moreover, due to the small number of observations in which the joint analysis produces

classification errors, we are not able to include interaction terms. In every case we estimate our

models with 215,933 observations and 4,000 clusters.

The effects of the scale of testing over wrong classifications regarding the effective reproduc-

tion number are monotonic, while the effects of the probability of testing symptomatic seem to

have a non-linearity when testing is closer to being random. In particular, increasing the scale of

testing reduces the probability of classification error according to the Rt threshold; while testing

some proportion of symptomatic patients reduces the probability of this classification error in at

least 2.6% with respect to totally random testing. Although this last result might seem counter in-

tuitive, remember that the measurement in Rt originates in attenuation bias that we generate when

we estimate the exponential growth rate using confirmed cases. As we test more symptomatic,

this growth rate increases (other things equal), alleviating the attenuation bias triggered by limited

testing.

The effects of the testing strategy over classification errors regarding the postivity rate are

completely monotonic. In this case, increasing the testing scale reduces this probability in up to

13%, while increasing the probability of testing symptomatics increases the probability of type I

and type II error in this classification by as much as 22%.

Finally, when we look at classification errors using the joint analysis it is interesting to see

that, although all coefficients are significant at, at least, 95% confidence level, the magnitudes are

really low. This result is important, because it provides us with evidence that although there might

be systematic bias in Rt and ρt separately, when analyzed jointly the effects of different testing

schemes over the probability of wrong classification are negligible.

The results in this section are relevant for the analysis of the current state of the transmission

process in environments with limited information and poor testing strategies. What we have shown
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is that the joint analysis of the test positivity rate and the effective reproduction number provides

a safer assessment.

4.2. Application to Country Data

Once we have explored our methodology’s limitations in controlled environments, in this

section we apply it to Covid-19 data to determine the current status of the infection process for 35

different countries.7 From this sample, we choose 15 countries for which we show explicitly how

each step of our model is applied.

The 15 countries that we consider include 6 developed economies and 9 emerging mar-

kets: United States, Canada, Italy, Switzerland, United Kingdom, Mexico, Chile, Colombia, New

Zealand, Japan, India, Bolivia, Ecuador, Uruguay and Israel. The quality of data in this group is

very heterogeneous and ranges from high quality data based on massive testing, proper data reg-

istries and short sample processing delays (as is the case for United States or Israel), to extremely

bad quality that reflects poor data gathering practices, long delays in sample processing and very

limited testing, usually clustered among people presenting symptoms (as is the case of Ecuador or

Mexico).

Another feature that makes these event studies interesting is that there is heterogeneity re-

garding the stage of the infection process at which each country is at the last date that we updated

the model. We also look at the cases of Uruguay or New Zealand, countries that were very suc-

cessful at tackling the pandemic at very early stages, so they never experienced exponential growth

in the number of confirmed positives.

We use data available from the Our World in Data Covid-19 Dataset (OWD) Max Roser

and Hasell (2020), except for Ecuador. For the latter we build the time series by hand using

the information that Ecuador’s Health Ministry (MSP) publishes daily in the presidency’s Risk

Management Commission web page. The latest update for each country included in this paper

was August 13th.

[Figure 9 about here.]

In general, data that is widely available for analysis is subject to several reporting issues that

trigger variations that are not necessarily related to the infection process. In Figure 9 we show

infection trajectories according to reported data for the 35 countries included in our sample. Hor-

izontal axis measure total confirmed cases until the last update, while vertical axis measure daily

counts of confirmed cases. Both axis are in logarithmic scales, and countries are classified accord-

ing to the quadrant they occupy in the (Rt, ρt) space considering its most updated observations.

This type of trajectories are quite informative. First, it is possible to identify countries that

have left exponential growth trends, as the group of countries we observe in Figure 9a, countries
7In an earlier version of the paper we were working with a sample of 56 countries. However, in many cases the test

registry have changed, causing irreparable breaks in the series and comparability issues with the number of confirmed
positives. The main issue is that, while the number of tests include only molecular tests (PCR), the total number of
confirmed positives include both molecular and antigen tests. In some countries the number of antigen tests is very
small, but in others it can produce severe bias when calculating the positivity rate.
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that continue to expand on exponential trends like in Figure 9c, or countries with serious data

issues, like what we observe in Figure 9d for the case of Mexico and Bolivia. In every case,

missing values occur either because data was not available for given dates, there are dates where

daily positives were zero, or dates where the evolution of confirmed cases imply negative values8

Something similar occurs with daily counts on tests.

With this in mind, in the sections to follow we illustrate how we apply our method to the

data we have at hand and being aware that we are not making necessary adjustments that are

complementary to our method. This process is divided in four stages: First we extract the seasonal

and atypical components, and then use the adjusted series to compute the smoothing parameter of

the HP filter as a function of the standard deviation of the cycle component. Second, we rebuild the

series of daily positives using the estimated trends and cycles for daily positives and tests. Third,

we estimate Rt and ρt using smoothed series. Finally, we classify each countries’ trajectories in

the (Rt, ρt) space.

4.2.1. Extracting the Seasonal and Atypical Components

To be able to work with additive components we transform everything to logarithms. Since

there are days when neither positives are detected nor tests are applied, we use linear interpolation

to fill these gaps. Then we detrend all series using the HP filter setting λ = 1600 for positives (we

change this later) and a linear trend for tests (testing monotonicity assumption, see Manski and

Molinari, 2020, for details).

The next step consists on cleaning the error terms from the seasonal component; for this, we

apply an S(3, 3) filter. Figure 10 shows the estimated seasonal components for daily positives

(blue) and daily tests (red) for each country. We measure these in percent deviations from trend

since the first day for which we have information on tests being performed.

[Figure 10 about here.]

To our surprise, we find strong seasonal components for all countries in our reduced sample.

It is clear that this type of noise can be extremely misleading for the analysis of the infection

dynamics, since seasonality generates peaks and valleys that are solely explained by factors that

are completely exogenous, like the fact that testing processing and sampling can be limited to

hospitals during the weekend.

Once we have the error terms clear of seasonality, we move towards identifying atypical

values. These events are characterized by sudden increases (or decreases) that occur very limited

times during the time we observe data. In the case of Ecuador, for example, we have such events

explained by unexpected increases in test processing capacities, or data revisions performed by

the authorities.

To detect these events in a systematic manner, we take the seasonally adjusted error terms for

positives and tests, order them, and eliminate the top and bottom 5%. To fill the gaps generated
8This occurs in the case of Ecuador due to massive data revisions that have been occurring since May 4th.
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by this procedure, we use linear interpolation. Figure 11 shows the identified atypical values for

daily positives (blue) and daily tests (red).9

[Figure 11 about here.]

In general we find that atypical values regarding testing occur at the beginning of the outbreak

or a second wave (as the case of Israel). This result makes sense, since it is expected for countries to

experience an adjustment period regarding testing capacities, which can be quite erratic. Moreover,

investment on testing infrastructure made during early stages of the infection process payoff at the

moment that politicians need to start making decisions about confinement measures. Atypical

confirmed positives, on the other hand, are scattered over the entire time window, and respond to

periods in which delayed samples are processed in small time frames.

However, there are cases like Ecuador, Canada or Japan where atypical values occur in the

second half of the period that we observe. This should be a source of concern, since this occurs

40 or 50 days into the infection process. At this point, usually there is economic, political, and

social pressure triggered by confinement measures and its secondary effects that pushes politicians

towards hasty decision making. If this process comes in hand with increased levels of noise in the

data that are solely explained by events that are completely uncorrelated to the infection process,

then wrong decisions can easily trigger new outbreaks.

Once we have the seasonally adjusted error terms without extreme values, we rebuild the

series for positives and tests, and use these series for the dynamics estimations that we describe in

the next section. We present the results in Figure 12, Panel 12a for daily positives and Panel 12b

for daily testing. Blue dots correspond to original data, red lines are the adjusted versions.

[Figure 12 about here.]

The final step in this stage is related to the estimation of the trend of the probability of detect-

ing positives among people tested and testing itself. In both cases we use the HP filter calibrated

with endogenous smoothing parameters that are directly correlated with the level of volatility in

the error term of each series. The corresponding values of λ∗ for the probability of positive re-

sults and daily tested are presented in Table 5. Notice that these parameters change every time the

model is updated.

[Table 5 about here.]

4.2.2. Estimating the Infection Dynamics

We use the adjusted time series of daily positives and tests performed to compute the prob-

ability of a positive result among those tested (all in logarithms). We treat this as a new time

series that only has a trend and the cycle component, since both positives and tests are already the

adjusted versions. Then, we filter the trend component for each variable using the endogenous

smoothing parameters that we found in the previous section.
9Keep in mind that, since we are working with logarithms, registries with zeroes or negatives are eliminated at the

beginning and replaced with linear interpolations.

20



With these elements, we reconstruct the trend and cycle components of daily positives from

the trend and cycles that we obtained for the probability of positive results and daily testing.

Notice that these do not coincide with the trend and cycle that we obtained in the cleaning stage.

The reason for this is that we are not using the same smoothing parameters. Then, we use block

bootstraping to build confidence intervals for the estimated trend.

[Figure 13 about here.]

We show the estimated trend and confidence intervals for each country in Figure 14. The

estimated trend corresponds to the blue line, with 95% confidence intervals in dotted red lines.

For comparison, we also include the adjusted daily positives time series (in gray bars). These

results show that our method does a good job sorting the data.

The usual practice (see Abbott et al., 2020, for example) consists on assuming delay distri-

butions to adjust reported positives according to onset of symptoms and actual date of infection.

Given the data that we have at hand, we are not able to perform these adjustments, so our estimates

are lagged behind. Nonetheless, a feature that makes our approach appealing is that our infection

curves are continuous and smooth (something that is not obtained just by adjusting the temporal

framework).

This is important, because the computation of the effective reproduction number Rt (i.e. the

rate at which the disease spreads among the population) is based on the exponential growth rate

of daily positives. Even if this curve is subject to delay adjustments (the usual practice), it still

exhibits sudden variations, and this affects significantly the dynamics of Rt: You can easily have

periods of Rt < 1 that do not respond the the infection process itself, but to other exogenous

factors.

[Figure 14 about here.]

To compute Rt we fit a linear trend to the logarithm of the trend of adjusted daily positives in

sliding windows of 10 days. We do this for each of the bootstrapped trend, so we can account for

this variation the moment that we build the confidence interval.

But this is not the only source of uncertainty. As we mentioned before, the generation time is

also a random variable. In this case, we take Abbott et al. (2020) estimate (mean of 3.6 days and a

standard deviation of 3.0) and assume that the generation number is log-normally distributed. We

simulate 1000 different samples with these characteristics so, together with the 1000 bootstrapped

trends, gives a grand total of 1,000,000 simulated values forRt at each point in time. We sort these

simulations and compute the 95% confidence interval. We present the results of our estimations in

Figure 14, where the blue solid line represents the mean, and the red dotted lines each of the 95%

confidence bounds.

A valid worry with our methodology is how new data might affect past and current trends. In

particular, our model could easily confuse atypical values with a change in the underlying trend,

specially in countries where data is very noisy. Its clear that this will have a significant effect in

the trend itself, but how much does new data affect the dynamics and the value of the effective

reproduction number?
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To answer this question, we apply our methodology to data 25 days ago, and then add more

recent observations, one at the time. We present the results of this exercise in Figure 15. In red

we show the behavior of Rt in the oldest data set, while the blue line corresponds to the newest.

Then, gray lines show intermediate cases, from lighter (older) to darker (newer).

[Figure 15 about here.]

This exercise shows how new information is incorporated to the model with each new ob-

servation we obtain from the data, and reflects the quality of data in each country. For example,

for cases like United States, Italy, Switzerland or United Kingdom, the quality of the data that is

produced is good enough, so new observations maintain the trend implied by previous data. Thus,

each new observation provides valuable information.

In countries like Canada, Colombia, Mexico, Chile or Israel, data contains more noise. How-

ever, in spite of being subject to significant corrections, the adjustment of the curve over time is

monotonic. In these countries it is necessary to have more data (i.e. wait for longer) until one can

assess the current situation.

This is not the case with Uruguay or Ecuador. In both cases information is so noisy (even

after all the cleaning process that it is subject to in our methodology), that each new release has the

potential to completely change the main trend. Thus, results with these countries are very volatile,

and takes much longer to be sure about what is going on.

This level of variation can produce analysis that have the potential to misinform the decision

making process, and can put population under serious risk.10 The reason for this is that due to

data quality, it is possible to have a second outbreak alarm on one day followed by a controlled

infection picture the following day. Thus, the estimation is not stable over time.

[Figure 16 about here.]

Because of this, we also analyze the dynamics of the test positivity rate which is more stable

than the effective reproduction number and can provide useful complementary information to

have a better assessment of the current state of the infection process. In Figure 16 we present the

dynamics of the test positivity rate. The blue line represents the estimated trend and the dotted red

lines the 95% confidence interval.

The test positivity rate measures the proportion of confirmed positives out of the daily batch

of processed tests. The World Health Organization set a target test positivity rate of 0.10 (black

lines in Figure 16), believing that at this rate the testing scale was in line with the scale of the

infection process. But, even if the test positivity rate is below this threshold, it tends to increase

during infection waves, and it tends to zero as the infection process is contained.

It is worth noticing the relation that exists between the test positivity rate and the effective

reproduction number. Comparing Figures 14 and 16 we see that there are cases (such as Israel, for

example) where there is a clear positive correlation between the effective reproduction number and
10It is worth noticing that this is an important limitation of the model we propose, but it also affects significantly

any analysis based on Bayesian methods, since the prior distribution might be very volatile from day to day, making
Bayesian updating quite challenging.
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the test positivity rate. However, in cases such as Ecuador the test positivity rate is significantly

above the 0.10 threshold in spite of the effective reproduction number being very close to (or even

below) 1. In this cases in particular is when the joint analysis of the two indicators is important,

since assessing only the effective reproduction number could easily generate a type II error (i.e.

believing the transmission process is under control when, in reality, is not).

4.2.3. Countries Trajectories Over the (Rt, ρt) Space

For this analysis we use the filtered trend of the test positivity rate and the effective reproduc-

tion number. Then, we compute the joint density of both indicators over a two-dimensional grid

with 101 points. For this we use the information for all countries and all time periods. We present

the results using two-dimensional contour plots and heat maps instead of using a three-dimensional

plot to have a better view of the implied dynamics. Figure 17 show the results.

There is one obvious difference between the data-generating process in our country data and

our simulations: Most countries in our sample have applied different measures to contain the

spread of the virus; some have been successful, some have been ineffective. But a first conclusion

rises from this difference: Countries with ineffective contention measures are more likely to end

up with trajectories that look like our simulations. This can be seen in Figure 17, which is similar

to Figure 8, but in this case we consider trajectories defined by the 35 countries that we include in

our sample.

[Figure 17 about here.]

The analysis with the joint density of the effective reproduction number and the test positivity

rate provides information about the current state of the countries we have in the sample, as well

as showing the most common paths followed during the pandemic. However, for this analysis to

be complete we need to look at the joint trajectories that countries have followed in the (Rt, ρt)

space. Figure 18 show the trajectories followed by each country according to the Cartesian order.

Countries are classified according to their most recent state, which is marked with countries’ labels

and hollow circles. Full circles mark the starting point for each country. As in the heat maps

that we presented before, we mark thresholds for the effective reproduction number and the test

positivity rate are in dotted red lines for reference.

Trajectories carry a lot of information. Panel 18c show the trajectories followed by countries

tha currently are in a low Rt, low ρt state. Within this group of countries, we can distinguish two

sub groups. There are countries, like Italy, that where in the bottom-right corner of the plot at

the beginning of the pandemic, and then passed through the top quadrants before controlling the

infection process. Part of the reason why these countries registered high positivity rates could be

related either to wrong testing strategies or a strong infection process which affected most of their

population within a very small time frame.

[Figure 18 about here.]
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For countries that currently are located in the bottom-right quadrant we have, again, three

types of trajectories. First, there are countries like India or Polonia that are moving to the bottom-

left quadrant; that is, the effective reproduction number is still high, but is falling, and the test

positivity rate is under control. A second subgroup are those that started in the bottom-left quadrant

(controlled infection process) and are experiencing a second outbreak. An example in this group

is South Korea.

Countries in the top-right quadrant are experiencing exponential growth infection processes.

The most worrying case is Bolivia, a country that is going through an explosive infection process

with an estimated effective reproduction number that is above 1.3 (and growing), and a test pos-

itivity rate over 50% (and growing). In similar positions are Peru and Mexico that, although in

these cases the effective reproduction number has been falling, it is still significantly over 1 and

register very large test positivity rates, especially in the case of Peru.

Finally, we have the top-left quadrant which currently includes only Ecuador, but there are

some other countries with trajectories that passed through this quadrant, which is characterized by

low Rt but test positivity rates that are still above 10%. One thing that all these countries have in

common (Ecuador and countries that went through this quadrant such as the United States, United

Kingdom or Italy), is that non-pharmaceutical interventions where either set too late, or they were

just not effective. Moreover, in the case of Ecuador, there is evidence of a poorly designed testing

strategy that targeted people with severe symptoms and workers in the front line; we can infer this

from Ecuador’s trajectory, that started with a test positivity rate of about 50% and in 149 days

since case 100 have not been able to reduce this rate below 30%.

To close this section, in Table 6 we present the effective reproduction number, the test positiv-

ity rate, the case fatality rate (CFR), the mortality rate and the testing scale using the most recent

data available for the 35 countries in our sample. Countries are classified into the four quadrants

in the (Rt, ρt) space. We added an additional category, Controlled Process, for those countries

that have effective reproduction numbers equal or below 1 and a test positivity rate that is virtu-

ally zero. This category is necessary because, due to the formula we are using to compute it, the

effective reproduction number converges to 1 as the exponential growth rate converges to 0.

[Table 6 about here.]

Based on the most recent data included in this paper, we find that there are only four countries

in our sample with the infection process under control: Taiwan, South Korea, Myanmar and New

Zealand. What is interesting to notice is that among these four countries there is no much variation

in fatality and mortality rates, but there is a wide range of variation regarding the testing scale (from

23 tests per 10000 inhabitants in Myanmar to 1042 tests in New Zealand). This wide variation is

present within all groups in our classification mechanism.

Due to the characteristics of countries that go through the top-left quadrant, it turns out that

the case fatality rate and the mortality rate are significantly higher (at least 1.5 times higher) than

in other quadrants. In Table 6 we present the case fatality and the mortality rates computed for

each quadrant. For this, we consider countries for which their more recent data place them in each

Quadrant. We find that in the top-left quadrant (Q4: Rt < 1, ρt >= 0.10) the case fatality and
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mortality rates are 7.5% and 2.6 per 10,000 inhabitants, respectively, which are higher than what

is found in other quadrants.

5. Conclusion

Management of the Covid-19 pandemic around the world have not been free from political

calculations, which in most countries implied changes in the way surveillance data is released to

the public, methodological changes improvised in the unfold of the pandemic, and information

gaps that can last for several days. This lack of information hinders the ability of agents external

to the government (such as academics) to fulfill their role as monitoring agencies. In this paper

we have attempted to reduce this information gap by proposing a simple method that allows us

to form a clear picture of the infection process when the only data available corresponds to daily

counts of confirmed cases and tests.

Our method consisted in subjecting the available data to old school time series filtering pro-

cesses that allows us to abstract the underlying infection process from stochastic innovations that

are orthogonal to the transmission process. In particular, before computing any epidemiological

indicator, we introduce a data cleaning process in which we eliminate the seasonal and atypical

components that affect the time series of daily counts. Then, using the filtered trend of daily posi-

tives, which we calculate imputing endogenously calibrated smoothing parameters to the HP filter,

we compute the effective reproduction number Rt and the test postivity rate ρt.

We applied our method to simulated data before using it on real Covid-19 surveillance data.

From this exercise we learned that any epidemiological indicator computed from daily counts of

confirmed cases and tests alone will produce systematically biased indicators. However, our data

treatment methodology managed to reduce the root mean squared error between the true effective

and the estimated reproduction number, and the probability of type II error (that is, having an

estimation of the effective reproduction number that is below 1, when the real process implies an

Rt that is still above 1). In other words our simulations show that, although there is uncertainty

about the true level of the infection process, there is much that we can learn just by studying the

dynamics of the process. This information is highly valuable particularly for public policy.

Further, we argued that the joint analysis of these two indicators allowed us to control for

the systematic bias present in Rt and to control for cases in which type II errors are more likely.

Moreover, studying the trajectories followed by countries over the (Rt, ρt) space we were able

to find dangerous situations in which Rt < 1 in spite of having test postivity rates that are well

above 10%. The reason for our worry is that our country analysis showed higher mortality and

case fatality rates compared to the other quadrants. Moreover, this analysis also allowed us to

pin down trajectories that might be related to outbreaks in countries that already had the situation

under control in previous weeks.

Among the limitations of our analysis, the most salient one is related to the method we use

to estimate Rt. In particular, we do not make use of Bayesian statistics for this task, which is the

most common method in the epidemiological literature for the estimation of this indicator. How-

ever, since these methods use the same surveillance data to build prior distributions, we strongly
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believe that the data-cleaning process that we propose would improve its performance. In fact, our

recommendation is to add our data treatment to the corrections that are already being applied by,

for example, Abbott et al. (2020).
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Figure 1: Join Trajectories Classification Scheme. We divide the (Rt, ρt) space in four quadrants
following the Rt = 1 threshold that determines if a transmission process is under control and
ρt = 0.10 which implies that the testing scale is appropriate according to the WHO.
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Figure 2: SEIRD compartments for the evolution of infections in our simulation. Percentages
are transition probabilities between compartments.
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(a) (b)

Figure 3: (a) The time evolution of Rjt . Columns represent testing scale and rows represent
Ptests. The blue line is the true effective reproduction number for the simulation Rsimt . (b) Rjt vs.
Rsimt . The black line is at 45 degrees. Columns represent testing scale and rows represent Ptests.
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Figure 4: Conditional probability distribution for RMSEj where j = {model, naive}.
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Figure 5: Conditional Means of RMSE for all testing parameter combinations. Only the value
of the conditional mean for σu = 0.05 is shown as it is very similar to that for σu = 0.025. The
standard error shown as a vertical line is barely visible due to its small size.
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Figure 6: Conditional probability distribution of type II error, βj , where j = {model, naive}.
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Figure 7: Conditional Means for the probability of the type II error for all testing parameter
combinations. Only the value of the conditional mean for σu = 0.05 is shown as it is very similar
to that for σu = 0.025. The standard error shown as a vertical line is barely visible due to its small
size. The best performance is found at high testing scales and random testing.
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Figure 8: Density of the joint dynamics of the effective reproduction number and the test
positivity rate. Warmer colors correspond to areas with a higher concentration of simulated tra-
jectories.

36



(a) Low Rt, low ρt (b) High Rt, low ρt

(c) High Rt, high ρt (d) Low Rt, high ρt

Figure 9: Trajectories of countries included in the sample. Horizontal axis measures cumulative
confirmed cases, vertical axis measures daily counts; both axis are measured in logarithmic scales.
Dotted lines correspond to corrected data. We organize countries according to the quadrant they
occupy in the (Rt, ρt) space.
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Figure 10: Seasonal components for daily positives (in blue) and daily tests (in red).
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Figure 11: Atypical values for daily positives (in blue) and daily tests (in red).
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(a) Daily Positives

(b) Daily Tests

Figure 12: Original (in blue) and adjusted (in red) time series for daily positives and tests for
each country. Vertical axis are measured in thousand cases (tests).
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Figure 13: Estimated trend and confidence intervals for daily positives. Trend is presented
in blue and 95% confidence intervals in dotted red lines. In gray bars we present adjusted daily
positives.
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Figure 14: Estimated effective reproduction number Rt. The mean is presented in the blue
line, and red dotted lines mark the 95% confidence interval. Due to significant variation among
countries, we use different vertical axis for each case.
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Figure 15: Estimated effective reproduction number Rt for different sub-samples in each
country. We consider data as it was 25 days ago, and then add new information day by day. The
oldest data set is presented in the red line, while the newest is in blue.
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Figure 16: Estimated test positivity rate ρt. The mean is presented in the blue line, and red
dotted lines mark the 95% confidence interval. Due to significant variation among countries, we
use different vertical axis for each case.
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(a) All Countries. Black lines delimit the zoomed area
that is presented in panel 17b.
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(b) Zoomed Section

Figure 17: Density of the joint dynamics of the effective reproduction number and the test
positivity rate. Warmer colors correspond to areas with a higher concentration of countries’
trajectories. Countries’ labels are located at the most recent location.
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(a) Low Rt, high ρt (b) High Rt, high ρt

(c) Low Rt, low ρt (d) High Rt, low ρt

Figure 18: Trajectories of countries for which their most recent bundle of effective repro-
duction number and test positivity rate is located at each quadrant. Full circles represent
the starting point, while hollow circles and labels represent most recent data. Thresholds for the
effective reproduction number and the test positivity rate are in dotted red lines for reference.
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Parameter Value Description

N 100,000 Population
E0 50 Initial number exposed
ρ 10 Average population density = N/10, 000 patches
Pexposed 12.5% Probability of contagion = β/ρ, assuming β = 1.25

as estimated in Meidan et al. (2020).
dinc dinc ∼ f(dinc) Incubation period follows a Weibull distribution

f(dinc) with shape parameter = 1.47, and scale pa-
rameter = 11.04.

dlat dlat ∼ f(dlat) Latency period follows a Weibull distribution f(dlat)
with shape parameter = 1.47, and scale parameter =
4.42.

dIAS ,R dIAS ,R ∼ f(dIAS ,R) Days to recovery for asymptomatic infections follow
Weibull distribution f(dIAS ,R) with shape parameter
= 1.47, and scale parameter = 11.04.

γIM ,R 1/5 Rate of recovery for IM .
γIS ,H 1/4 Rate of transition from IS to H .
γH,RD 1/11 Rate of transition from H to resolution.
γIC ,V 1/3 Rate of transition from IC to V .
γV,RD 1/13 Rate of transition from V to resolution.
θsim 5.05 days Average Serial interval is found from the average

number of days between primary and secondary in-
fections for the model after 60 time periods.

T 60 days Maximum number of days.

Table 1: Epidemiological parameters for SEIRD simulations.
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Parameter Values

scale 0.0001, 0.0005, 0.001, 0.005, 0.01
Ptests 0, 0.25, 0.5, 0.75
σu 0.05, 0.25
gtests 0.025

Table 2: Testing parameter values used for the simulations.
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Error in Rt Error in ρt Error in (Rt, ρt)

Mean 6.06 23.64 0.34
Standard Deviation (0.239) (0.425) (0.058)

Table 3: Errors in Rt, ρt and its joint analysis. We present means and standard deviations
measured in percentages.
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Country λ∗ρ λ∗s Country λ∗ρ λ∗s

Bolivia 5,039.38 3,330.30 Japan 12,210.44 6,908.89
Canada 5,084.30 3,302.42 Mexico 664.33 767.95
Chile 942.85 1,931.43 New Zealand 6,084.17 2,658.15
Colombia 1,390.30 787.28 Switzerland 4,050.83 1,049.76
Ecuador 2,813.13 6,387.85 United Kingdom 1,028.52 1,364.81
India 1,360.89 972.38 United States 585.29 311.90
Israel 3,386.80 2,099.95 Uruguay 10,292.96 2,238.21
Italy 1,364.23 623.95

Table 5: Estimated smoothing parameters for the probability of detecting positives λ∗ρ and
daily testing λ∗s for each country. The scaling parameter used to compute these numbers was
ζ = 50, 000. Keep in mind that, since these parameters are endogenous, they change every time
that data is updated.
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Country Rt ρt CFR Mortality Test
Rate Scale

Quadrant 1

Ecuador [ 0.96 , 1.03 , 1.14 ] [ 0.30 , 0.36 , 0.43 ] 9.72 5.42 133.22
Colombia [ 1.01 , 1.07 , 1.18 ] [ 0.25 , 0.28 , 0.32 ] 3.31 2.59 389.69
Costa Rica [ 0.92 , 1.00 , 1.08 ] [ 0.17 , 0.21 , 0.27 ] 1.01 0.46 185.04
Zimbabwe [ 1.07 , 1.23 , 1.59 ] [ 0.09 , 0.13 , 0.18 ] 2.23 0.07 48.18
Maldives [ 1.09 , 1.28 , 1.74 ] [ 0.09 , 0.12 , 0.16 ] 0.38 0.35 1656.76

Quadrant 2

Mexico [ 0.94 , 0.99 , 1.03 ] [ 0.67 , 0.73 , 0.79 ] 10.92 3.92 79.61
Bolivia [ 0.92 , 1.00 , 1.07 ] [ 0.40 , 0.50 , 0.61 ] 4.04 3.12 153.82

Quadrant 3

Israel [ 0.92 , 0.99 , 1.06 ] [ 0.07 , 0.09 , 0.10 ] 0.73 0.65 2157.84
Cote d’Ivoire [ 0.68 , 0.85 , 0.95 ] [ 0.06 , 0.08 , 0.12 ] 0.63 0.04 41.58
Qatar [ 0.83 , 0.94 , 0.99 ] [ 0.07 , 0.08 , 0.09 ] 0.17 0.65 1837.13
United States [ 0.88 , 0.95 , 0.99 ] [ 0.07 , 0.07 , 0.08 ] 3.21 4.94 1910.94
Chile [ 0.93 , 0.98 , 1.02 ] [ 0.06 , 0.07 , 0.08 ] 2.70 5.30 988.49
Bahrain [ 0.86 , 0.95 , 1.01 ] [ 0.03 , 0.04 , 0.05 ] 0.37 0.97 5426.37
Russia [ 0.96 , 1.00 , 1.03 ] [ 0.02 , 0.02 , 0.02 ] 1.69 1.03 2145.84
Slovenia [ 0.74 , 0.88 , 0.96 ] [ 0.01 , 0.01 , 0.02 ] 5.32 0.58 667.26

Quadrant 4

India [ 1.02 , 1.08 , 1.23 ] [ 0.08 , 0.09 , 0.11 ] 1.99 0.33 183.20
Japan [ 1.07 , 1.25 , 1.64 ] [ 0.06 , 0.08 , 0.11 ] 2.22 0.08 101.88
Romania [ 1.01 , 1.08 , 1.24 ] [ 0.05 , 0.07 , 0.08 ] 4.36 1.42 730.26
Switzerland [ 1.02 , 1.10 , 1.27 ] [ 0.03 , 0.04 , 0.04 ] 4.69 1.98 979.04
Belgium [ 1.05 , 1.16 , 1.39 ] [ 0.03 , 0.03 , 0.03 ] 13.21 8.52 1629.10
Tunisia [ 1.03 , 1.13 , 1.36 ] [ 0.01 , 0.02 , 0.03 ] 3.08 0.04 86.33
Slovakia [ 1.02 , 1.10 , 1.28 ] [ 0.01 , 0.02 , 0.02 ] 1.19 0.06 520.38
Austria [ 0.95 , 1.01 , 1.09 ] [ 0.01 , 0.02 , 0.02 ] 3.25 0.80 1091.47
Italy [ 1.03 , 1.10 , 1.25 ] [ 0.01 , 0.02 , 0.02 ] 14.04 5.82 716.10
Canada [ 1.01 , 1.10 , 1.28 ] [ 0.01 , 0.01 , 0.01 ] 7.47 2.38 1203.36
Cuba [ 1.12 , 1.44 , 2.20 ] [ 0.01 , 0.01 , 0.01 ] 2.98 0.08 269.85
Australia [ 0.94 , 1.03 , 1.16 ] [ 0.00 , 0.01 , 0.01 ] 1.46 0.12 1953.02
Uruguay [ 0.97 , 1.04 , 1.15 ] [ 0.00 , 0.01 , 0.01 ] 2.73 0.11 383.56
United Kingdom [ 1.02 , 1.07 , 1.18 ] [ 0.00 , 0.00 , 0.01 ] 14.98 6.86 1619.41
Norway [ 1.06 , 1.20 , 1.52 ] [ 0.00 , 0.00 , 0.00 ] 2.70 0.47 885.79
Malaysia [ 0.99 , 1.08 , 1.26 ] [ 0.00 , 0.00 , 0.00 ] 1.37 0.04 328.53

Controlled Process

Taiwan [ 0.93 , 1.00 , 1.06 ] [ 0.01 , 0.01 , 0.01 ] 1.46 0.00 35.20
South Korea [ 0.84 , 0.95 , 1.01 ] [ 0.00 , 0.00 , 0.01 ] 2.07 0.06 317.79
Myanmar [ 0.89 , 0.98 , 1.05 ] [ 0.00 , 0.00 , 0.00 ] 1.67 0.00 23.31
New Zealand [ 0.90 , 0.99 , 1.07 ] [ 0.00 , 0.00 , 0.00 ] 1.80 0.05 1042.47

Table 6: Classification in the (Rt, ρt) Space. Results are computed using the most recent
information available for each country. CFR refers to the Case Fatality Rate. The Controlled
Process category includes countries for which the effective reproduction number is close to (or
below) 1 and the test positivity rate is virtually zero. The mortality rate and the testing scale are
both measured per 10000 inhabitants.
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